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Abstract A predictor corrector approach based on the zig-zag model is proposed for the bending
of thick laminated composite plates. The main purpose of the approach is to reduce the differences
between the assumed variation of the transverse shear stresses provided by the constitutive equations
and the computed vanation of the same stresses from the equilibrium equations of elasticity. In the
predictor phase. a linear or cubic zig-zag model is adopted and the layerwise polynomial approxi-
mation of the transverse shear stresses through the thickness is determined from the equilibrium
cquations of elasticity. This approximation is then used in a general higher-order zig-zag model in
the corrector phase in order 10 improve the predictions for the displacements and stresses. The
present predictor-corrector zig-zag model satisties the continuity of the in-plane displacements and
the transverse shear stresses at the interfaces while maintaining the same number of variables as in
Mindlin's theory. The numenical results for the bidirectional bending of both symmetric and
antisymmetric thick laminates are in excellent agreement with the exact elasticity results of Pagano.
They also show a marked improvement over the results from the linear zig-zag model of Di Sciuva
and the cubic zig-zag model of Lee er /.. especially at the intertaces.

INTRODUCTION

The use of layerwise displacement models for the analysis of thick laminated composite
plates is now widely accepted in research. Such models allow the in-plane displacements to
vary in a piecewise manner through the thickness of the laminate and they naturally
include the effect of transverse shear deformation. In contrast to the simpler laminatewise
displacement models which make use of a single polynomial for the distribution of the in-
plane displacements. the layerwise models can reproduce the zig-zag behaviour of the in-
plane displacements. This zig-zag behaviour is more pronounced for thick laminates where
the transverse shear modulus changes abruptly through the thickness and can be seen in
the exact elasticity solutions obtained by Pagano (1970). and Pagano and Hatfield (1972)
for the bidirectional bending of rectangular laminated plates. Clearly, it is necessary to use
a layerwise model for the analysis of thick laminates in order to predict the in-plane and
transverse shear stresses accurately.

Whitney (1969) appears to be the first to employ a layerwise model for improving the
gross behaviour of laminates. His model assumed a layerwise quadratic variation of the
transverse shear stresses which on integration led to a layerwise cubic variation of the in-
plane displacements. Furthermore, by making use of the necessary continuity conditions,
the number of variables remained the same as in first-order shear deformation theories
(FSDT). However. the equations of equilibrium were taken to be those from the classical
lamination theory and are thus not variationally consistent. The numerical results for
deflections, natural frequencies and buckling loads were in excellent agreement with avail-
able exact elasticity solutions. As no results were given for the in-plane stresses, it was not
possible to make any conclusion regarding their accuracy.

In his work. Whitney actually allowed for the possibility of using other than a layerwise
quadratic variation of the transverse shear stresses. In principle. a single characterizing
function f(2) of the thickness coordinate - was used to generate the layerwise variation
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with the condition that the transverse shear stresses be continuous at the interfaces and
zero at the free surfaces. For example. he used f(2) = 1 —4(z/h)° to produce the layerwise
quadratic variation for his numerical results. Here. /i is the total thickness of the laminate.
The best results are thus obtained when the function /(z) leads to a layerwise distribution
of transverse shear stresses which is close to the exact elasticity solution. Of course, such a
function cannot be known « priori as it depends not only on the ply configuration but also
on the plate geometry. loading and boundary conditions. Also, a single continuous function
1(z) may not be sufficient for the description of the distribution of the transverse shear
stresses. It should be pointed out here that the use of f(z) was first proposed by Ambart-
sumyan (1969) for the analysis of homogeneous plates and shells.

Other layerwise or zig-zag models have been presented by Mau (1973), Chou and
Carleone (1973). Di Sciuva (1986). Murakami (1986) and Ren (1986). Di Sciuva’s model
made use of linear precewise functions and had the advantage of having the same number
of variables as the FSDT. In principle. Murakami's model could be extended to higher-
order piecewise functions with a further increase in the number of variables. The layerwise
cubic model of Ren required two variables more than the FSDT but it produced results
which agreed well with those from exact clasticity. These models demonstrated that layer-
wise functions are necessary for determining the zig-zag thickness distribution of the in-
plane displacements.

Reddy (1987) proposed a generalized laminated plate theory which could account for
any desired degree of approximation of the distribution of the in-plane displacements
through a proper selection of the variables and functions. Reddy also showed that the
theory included many of the well known plate theories as special cases. More importantly,
the theory can be used in finite elements with Lagrange and Hermite interpolation functions
through the laminate thickness. Thus. by increasing the number of variables in a suitable
manner, his theory can produce the zig-zag variation of the in-plane displacements.

Recently. Lee er al. (1990) presented an improved zig-zag model which has a layerwise
cubic variation of the in-plane displacements but the same number of variables as the
FSDT. The numerical results for the maximum in-plane stresses at the free surfaces showed
very good agreement for the cylindrical bending of thick symmetric cross-ply laminates
when compared with the exact elasticity solutions from Pagano (1969). However, the
computed displacements and stresses at the interfaces were not accurate enough. The
application of the improved zig-zag model to the bidirectional bending of thick symmetric
cross-ply lTaminates in Lee er «f. (1994) also showed a similar trend. Further investigation
showed that the accuracy of the model drops when used for non-symmetric laminates.

The reason for the above inadequucy of the zig-zag model of Lee er al. (1990) is very
much due to the use of a single parabolic function for the description of the transverse shear
stresses in the constitutive equations. As the parabolic function is symmetric with respect to
the mid-plane, the performance of the model is best when it is employed for the analysis of
symmetric laminates. Of course, the equilibrium equations of elasticity can be used to give
an improved distribution of the transverse sheur stresses for both symmetric and non-
symmetric laminates. However. the differences between the constitutive description and the
equilibrium distribution are in fact an indication of possible inaccuracies in the computations
of the in-plane displacements and stresses. Although these differences are usually greater for
non-symmetric laminates. they can also be significant for symmetric ones and are responsible
for the inaccuracies in the displacements and stresses at the interfaces.

The purpose of this paper is thus to present a predictor-corrector approach for the
numerical analysis of general thick laminated plates which ensures that the transverse shear
stress distributions from both constitutive and equilibrium considerations are sufficiently
close to each other before the computations of the displacements and stresses are considered
sufficiently accurate. In the predictor phase. the linear zig-zag model of Di Sciuva (1986)
or the cubic zig-zag model of Lee ¢r u/. (1990) can be adopted. Thereafter, a general higher-
order zig-zag model based on the previous equilibrium distribution of the transverse shear
stresses s utilized in the corrector phase. The advantage of the present approach is that a
high level of accuracy can be achieved with the same number of variables as in the FSDT
even though a general higher-order 7ig-7zag model is employed in the corrector phase.
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When the model used in the predictor phase 1s a simple one, the corrector phase can,
of course, be performed analytically to yield a higher-order refined theory with an increase
in the number of variables. For example. Reddy ¢f «/. (1991) derived a variationally
consistent layerwise cubic model for symmetric laminates starting from the simple classical
lamination theory (CLT). The model has five variables (four more than the CLT) and
performed very well in comparison with the exact elasticity solutions from Pagano. As it
does not consider the deformation of the mid-plane. this model actually has two variables
more than the layerwise cubic model of Lee ¢r «/. (1990). This increase in the number of
variables, especially for non-symmetric laminates, is the primary reason for not deriving
higher-order refined theories analytically from other than the CLT. The present paper
serves to address this problem by providing a predictor-corrector approach in numerical
form so that the model used in the predictor phase is not limited to the CLT.

Noor and Burton (1989). Noor and Peters (1989) and Noor et al. (1990, 1991) have
proposed two predictor-corrector procedures for the accurate prediction of the global and
detailed response charactenistics of multilayered plates and shells. Both procedures used
the FSDT in the predictor phase. In the first procedure. the three-dimensional equilibrium
equations and constitutive relations were used to determine « posteriori estimates for
the composite shear correction factors. The improved shear correction factors were then
employed for adjusting the transverse shear stiffnesses in order to obtain more accurate
results. In the other procedure. the tunctional dependence of the displacement components
on the thickness coordinate was calculated « posteriori in the corrector phase. The corrected
quantities were then used in conjunction with the three-dimensional equations to provide
better estimates for the different response quantities. While the numerical results from both
procedures agreed well with exact elasticity results, the second one generally gave better
predictions. However. the second procedure was more involved as it required the use of the
Rayleigh—Ritz technigue in conjunction with the Principle of Minimum Potential Energy
for the determination of the 12 unknown parameters in the symmetric and antisymmetric
functions of the thickness coordinate.

The predictor—corrector approach described in this paper does not depend on the
calculation of improved shear correction tactors nor on an increase in the number of
variables from five in the FSDT to 12 in the Ravleigh-Ritz technique mentioned above.
Instead, by using a layerwise model which satisties the continuity of the in-plane dis-
placements and the transverse shear stresses at the intertaces. the number of variables is
kept the same as in the FSDT. Essentially, the distribution of the transverse shear stresses
obtained from the equilibrium equations of clasticity in the predictor phase is used to
control the layerwise description of the displacements in the corrector phase. For this
purpose, a linear or cubic zig-zag model is emploved in the predictor phase while a general
higher-order zig-zag model 1s utilized in the corrector phase.

In this paper, the salient features of the general higher-order zig-zag model are
described first. Following this, the predictor-corrector procedure is presented and then
applied to the benchmark problems of Pagano (1970), and Pagano and Hatfield (1972).
The numerical results from this predictor-corrector zig-zag model for the bidirectional
bending of both symmetric and antisymmetric thick laminates are compared with those
from exact elasticity, the linear zig-zag model of Di Sciuva (1986) and the cubic zig-zag
model of Lee et al. (1990).

THEORY

Consider a laminated composite plate of uniform thickness & with n orthotropic layers
(Fig. 1). The x-v plane is taken to be the mid-plane of the laminate, and the principal
material axes of elasticity can in general be oriented at an angle to the laminate axes. As
usual, by assuming a state of plane stress. the reduced plane stress constitutive equations
for a particular layer expressed in terms of stresses and strains in the laminate axes are
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Fig. 1. Laminate geometry.
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where Q,, are the transformed reduced elastic constants.
In the present model, the layerwise displacement field is written in the general form as

Q
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b=l —ow )P
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wh=w (hk=1..... 1), 2

|

where u),. tf. ¢). ¢* and w are functions of the x and 1 coordinates, with the superscript &
referring to the kth layer. The variables «, and v§ can be interpreted as the in-plane
displacements on the x-y plane (that is. at = = 0) if the displacement distributions #* and
t* for the kth layer are extrapolated to the x y plane. Similarly, the variables ¢* and ¢* are
the transverse shear strains at - = 0 if the transverse shear strain distributions &% and & for
the kth layer are extrapolated to the x- v plane provided the coefficient of z in the poly-
nomials /%(z) and f*(z) is unity.

It is noted that the introduction of the general polynomials f%(z) and f%(z) allows the
transverse shear strains to vary in an arbitrary manner through the thickness of each layer.
Of course, this is subject to the condition that they enable the satisfaction of zero values at
the free surfaces. From this point of view. the linear and cubic layerwise models of Di
Sciuva (1986) and Lee et al. (1990) are special cases of the above displacement model. In
common with all higher-order theories for the bending of plates, no shear correction factors
are required here.

As a first step towards a reduction in the number of variables in the model, the
continuity of the transverse shear stresses a. and g, at the interfaces is imposed. By making
use of the constitutive relations in egns (1). this condition gives rise to the following
recurrence relations for ¢% and ¢} for generally orthotropic layers:

S
il

agl by

o= gt (3)

I

where the coefhicients «;. h;. ¢; and J; for cach layer are given by
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In the above equations, z; 1s the --coordinate of the lower surface of the jth layer. and
1%.(2) denotes the derivative of f%(z) with respect to =. By applying the recurrence relations
(3) successively. ¢* and ¢* can be expressed explicitly in terms of ¢! and ¢! as

& |
¢\ =+ b,

¢y =l +dio! (©)

where . by, ¢, and d, can be written as products of a;.h;.c; and ;. The first laver has
been chosen as the reference layer for the sake of simplicity.

The next step is to obtain the expressions for i, and t, in terms of the variables

uj. vy, ¢\ and ¢! by satisfying the continuity of the in-plane displacements at the interfaces.

This yields the following equations:

Uy = b+ pl + !
=i o). (7)
wo= [f1 (e, —f(z)a)
o= SR )
= Z L e —1iE)e)
ne = i [0 Nepd, 1 Uz)d] (3)

By substituting eqns (6) and (7) for i}, 5. ¢* and ¢* into eqns (2). it is seen that the
final displacement field for an n-layer laminate contains only five variables. namely.
uy. vy, L. ¢! and w. This final layerwise displacement field is given by

W= b~ 2w, +p ()P + ¢ (0) )

R NS A G N T}

it
=
I

~~~~~ ny. 9)
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where

Pe(Z) = % +akft(:)
G (2) = B+ b f(D)
FU2) = e f10)

5 (2) = ne+d A9, (10)

It is important to note that the linear zig-zag model can be recovered from the above
displacement field by specifying f%(z) = f*(z) = : for all k. Similarly, the cubic model is
obtained by letting /% (z) = f¥(z) = (z —42*/3/7). In fact. in the present predictor—corrector
approach, one of these two models is used in the predictor phase in order to provide the
polynomial functions f%(z) and f% (=) for all the layers in the corrector phase.

The governing equations corresponding to the final displacement field are derived
using the Principle of Virtual Work. These variationally consistent equations are

. CNp N

ouy: = +-.-=0
cx cy

.. CN. N

dry: 4 -=0
cx 1

C (‘\P\ (“P(,]

op.: -+ . —~=—R =0
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where ¢ is the distributed transverse load. and the stress resultants are given by

R

i'""afd_— (i=1,2.6)

Vo

\/
l

M, = Z,ih‘:afd: (i=1,2.6)

Py = Z ' ‘7‘(Pk(-')6ﬁ+rk(\:)aﬁ)d:

kel

oy

Pr=3 ‘%‘(‘IA(—")O'@-%S;\.(Z)O";)dz
koo

JIy

P = Z ' M(m(:)UHrk(Z)G‘:f)dz

i

P

A

}: J o (g2(2)0 + s,(2)0%) d=



Bending of laminated composite plates 885

"

R =Y f A o Aok s

A=

I

v

"

=3 J b S A=)k 4 d, P (2)0) de (12)

x
I
] ;

k=1

The Principle of Virtual Work also provides the boundary conditions which for a smooth
boundary are given by specifying

uh, or N,

re, or N,

‘M, M,
wooor . RS
cn Cs
cw
- or A/],,
cn
1
n or P,
.l
¢, or P.. (13)

where the subscripts n and s refer to the normal and tangential directions, respectively, to
the boundary of the plate. At discontinuities, the corner conditions are

woor M. (14)

Expressed in terms of the displacements. the governing equations can be written as
Lu = q. (15)

where L is the differential operator matrix, and u and q are the generalized displacement
and load vectors given by

u=[uy, vy ¢! o w]
q=[0 0 0 0 4" (16)

Instead of using the variables u). 1. ¢!, ¢! and w. the governing equations and boun-
dary conditions can be written in terms of uy, . @7, @7 and w, where the superscript m
refers to the mid-plane of the laminate. This can be performed through a simple trans-
formation.

PREDICTOR-CORRECTOR APPROACH

Predictor phase

In the predictor phase, the linear or cubic zig-zag model is used to provide the initial
estimate of u from which the in-plane stresses o/, g, and g, can be found. For most problems,
the initial estimate from the linear zig-zag model is sufficient and can be obtained from the
general higher-order model by setting

e =)=z k=1...., n). (17)

If a better estimate is required, the cubic zig-zag model is used by letting
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o= =-—-"+ tk=1,....n). (18)
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Using the results from one of the two models, the transverse shear stresses g5 and o, are
caleulated by integrating the three-dimensional equilibrium equations in the thickness
direction. In the absence of body forces. these are

P R A r=
oz =~ N (6! (40 (2)d-— ‘ (0% (D) + b (2) d:
az) = Z ‘ (6, (D405 (zNd:— 7 (ob (D) +0b (2))dz (19)

Corrector phase

In the corrector phase. the transverse shear stress distribution found earlier is used to
determine the new polynomial functions f%(2) and f%(z) in the layerwise displacement field.
To do this. let the functions be represented as a power series by

/') = : gz k=1, nandgi = 1)
oy = Z Nzt k=1,..., nand i = 1), (20)

where ¢0 and /i are the coetficients for the jth power of z associated with the two in-plane
displacements of the kth layer. Without loss in generality, the values of ¢} and 4} are taken
to be unity so that the variables ¢* and ¢* denote the transverse shear strains at z = 0 on
extrapolation of the transverse shear strain distributions &£ and &% for the kth layer to the
Ao plane. By making use of the constitutive relations in eqns (1), the transverse shear

stresses o< and 4, are given by

i

gD =Y g G DO+ Y B (D Qhsdh
F |

r=0

m

ai(z) = s \‘/',:\~ = ])S/Qisd)f + Z h;\+l(j+ 1)51Q§4¢f' (2])

it i=0

Evidently. the coefficients ¢* and 4% must be chosen such that the transverse shear
stress distributions given by both egns (19) and (21) are coincident. One way is to express
egns (19) explicitly in powers of = so that ¢¢ and #} can be deduced from a comparison with
cgns (21). This method is convenient when only one corrector phase is desired because the
number of terms m+ 1 used to represent f*(z) and f%(z) is only two greater than the order
of the z1g-zag model in the predictor phase. For instance, if the linear model is used, then
three terms are nceded. However, the method grows in complexity with subsequent corrector
phases because of the increase in the number of terms.

A more general procedure is to fix the number of terms used in the power series for
/(=) and f3(2) in all the corrector phases. Usually, five terms are more than sufficient. The
distributions given by eqns (19) are then approximated by the same number of terms
even though the exact representation requires two more. In order to provide a good
approximation. Chebyshev polynomials are used for the distributions from eqns (19) since
they converge much more rapidly over the interval than the corresponding power series
due to their orthogonality. To obtain the expansions for ¢%(z) and ¢(z) in terms of
Chebyshev polvnomials. a change in variable is first made for each of the layers by writing
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so that the interval [z;.z,, ] becomes [—1. +1]. With this transformation, ¢%(z) and
o’ (2) for each layer can be expressed as

m

aiin) =EL+ Y ENT(n)
Je

dhin =K+ Y F T, (23)
ey

where T(n) is the jth Chebyshev polynomial in terms of #. and the coefficients E¥ and F}
are given by

2! T.(t
Eb = - () - ,’,(17) dy
Jo NEESE
2 T
F="1 dm 7 24)
T[v ! N l"”

These coefficients can be found by performing the integration numerically. Once they
are found, the Chebyshev expansion is transformed to a power series in terms of n through
an appropriate summation of the coefficients. The resulting power series in # is then
converted into a power series in = so that ¢ (2) and ¢%(2) can be expressed finally as

m

oi(z) = Z Gz

1=0

m

A= Y H (25)

=0

For the transverse shear stress distributions given by eqns (21) and (25) to be the same,
it is obvious that the coefficients ¢} and 4} in the functions f%(z) and f%(z) for the in-plane
displacements must be given by

S = GIQ% — HI Q4
b NS R .
(j+ A" ¢!
_HIQN GO
(j+DAoh

/’ A

!

(26)

where A" has already been defined earlier in eq. (5). Now. the fact that g4 and /; have been
taken as unity in eqns (20) demands that

AA(I)A\ = Gf)QAu*Hf)QL
ALY = HiQw — G104 27)

Combining eqns (26) and (27) yields



88K K. H. lecand L. Cao

|Gk - HIQk
g4, = . T T T

U DGR~ HAQ

ST HIQL GO

o= : . (28)
G+ 1 Hy 04 — GOk

ol

It is observed that the use of the above expressions for ¢¢ and /¢ in the corrector phase
preserves the shapes but not the actual magnitudes of the products /%(z)¢% and fi(z)¢%.
This is because the variables ¢* and ¢* are treated as new unknowns to be solved for in the
corrector phase.

The corrector phase is completed by making use of the new polynomial functions
f%(z) and f%(2) in the layerwise displacement field of eqns (2). This gives rise to a new
differential operator matrix L which is different by a small amount from the old one in two
rows and columns. At this point. either a fresh solution or a modified solution can be
obtained, with the latter made available through standard re-analysis techniques.

NUMLERICAL RESULTS

The effectiveness ot the proposed predictor- corrector approach is assessed by applying
it to five problems involving the bidirectional bending of thick simply-supported symmetric
and antisymmetric specially orthotropic laminates subjected to sinusoidal loading. The
three-dimensional exact elasticity solutions provided by Pagano (1970), and Pagano and
Hatfield (1972) for these problems are used as the benchmark for quantifying the accuracy
of the present method. For the purpose of comparison with other layerwise or zig-zag
theories which have the same number of variables. results from Di Sciuva’s linear theory
(DST) and Lee er al."s cubic theory (LT) arc also presented. The results from the DST have
been calculated independently (without any shear correction factor) by using eqns (17) in
the present general higher-order zig-zag model whereas the results from the LT (except for
the first problem) are available from Lee er «/. (1994). Alternatively, the latter results can
be obtained independently by using egns (18) in the present model.

The five problems which are studied here are

(1) an antisymmetric two-laver (0 90 ) ¢ross-ply square laminate (¢ = b) with layers of
equal thickness.

(2) a symmetric three-layer (0 90 0 ) cross-ply square laminate (¢ = b) with layers of

equal thickness.

) the same lamination geometry as in (2) but with A = 3a.

(4)y a symmetric four-layer (0 90 90 ) cross-ply square laminate (¢ = b) with layers of
equal thickness. and

(5) a symmetric five-layer (0 90 0 90 0 ) cross-ply square laminate (¢ = b) with layers
at the same orientation of equal thickness and with the total thickness of the 0° and
90 layers the same.

In all the problems, the material constants for each orthotropic layer are assumed to
be £, = 25Ev. Gy = 0.5F. Gy = 0.2F; and vy = v = 0.25, where L and T denote the
directions parallel and perpendicular to the direction of the fibre orientation, respectively.
The laminate. which has edge lengths ¢ and A in the x and 1 directions, respectively, is
assumed to have the following simply supported conditions:

rhEw=¢l =\

Il

M =P =0 at x=(0,q)

= = ¢l =N =M =P =0 at v

(0. h). (29)

Under the above boundary conditions and the sinusoidal transverse load given by
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A
g(x.v) = g, sin , sin , (30)

the following sets of displacements and transverse shear strains will satisfy the governing
eqns (15):

] ) HANN A%
uy{x.v) = Ucos ) sin b
[&

' AN v
rofx.v) = Fsin — cos
: 17 h
. ) nNoomy
¢ (v.v) = F.cos s
: d h
. A\ Ty
G (xv.rv)=F sin - cos
’ d h
B AN 4
win.y) = Wsin o osin (31)
: a h

Substituting eqns (30) and (31) into egn (13) and collecting the coefficients result in
five algebraic equations which can be put in matrix form as

Ax = b. (32)

where A is a matrix of known coefticients. x 1s the unknown generalized displacement
amplitude vector and b is the applied generalized load amplitude vector. These vectors are
given by

b= 0 0 0 ¢." (33)

In the presentation of the results. non-dimensionalized displacements and stresses are
defined in the usual manner with respect to the data as follows:

Fu
g hR*
L00£ v
g hR*

=
i

I

(Gl-ﬁl'ah)
‘/nR:

. (C4~Gs)

4R (34)

where R = a/h. Unless otherwise stated, the results for the transverse shear stress dis-
tributions 64 and &5 are obtained from integration through the thickness of the appropriate
three-dimensional equilibrium equations of elasticity and not from the constitutive equa-
tions. Also, displacement and stress distributions through the thickness are described with
respect to the non-dimensionalized thickness coordinate =, that is, =/ /.
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The numerical results for the five problems are presented in Tables 1-5 and Figs 2-10.
In the predictor phase of the present predictor-corrector approach, the linear zig-zag model
has been used throughout. Only a single corrector phase is found to be necessary, and three
terms are employed in the Chebyshev polynomial approximation. Table 1 gives the values
of the non-dimensionalized stresses through the thickness of the (0°/90°) square laminate
of Problem (1) for a/h of 4. It is seen that the present results are closer to the exact elasticity
results than the DST and LT. This can be observed by considering the values of the stress
component &, for a/h = 4 at the free surfaces and at the interfaces given in Table 1. For
the 0° layer, the present results are in error by a negligible 1.1% at both 2= —0.5 and
z = 0.0 whereas those for the DST are in error by 3.5 and 23%. respectively. The results
from the LT are even less accurate for this problem with errors of 18 and 20%, respectively.
At the free surface of the 90" layer. the prediction for &, (although much smaller than at

Table 1. Nondimensionalized stresses in (0 90 ) square laminate under sinusoidal
loading (t = h.2. a = h.ah = 4)

z Source 7, 7 G, G Gy
-0.50 Pagano —1.7807 —0.0955  0.0000 0.0000 0.0591
Present - (), 7894 —-0.1054  0.0000 0.0000 0.0640
Lee et al. -~ 09176 - 0.0702 0.0000 0.0000 0.0485
Di Sciuva 0.8078 -0.0634  0.0000 0.0000 0.0591
- 0.40 Pagano -().398§ —-0.0734  0.0423 0.1976 0.0427
Present - 1).3807 —0.0823 0.0466 0.1956 0.0464
Lee et al. 0.514% ~0.0520  0.0318 0.2362 0.0335
Di Sciuva -0.5017 —0.0551 0.0309 0.2180 0.0348
-0.30 Pagano - 0. 1437 —0.0553  0.0738 0.2919 0.0307
Present 01312 --().0635 0.0818 0.2855 0.0338
Lee et al. 01643 —0.0395 0.0547 0.3504 0.0220
Di Sciuva 0.1957 —0.0468 0.0565 0.3371 0.0261
—-0.20 Pagano 0.0598 - 0.0398 0.0968 0.3127 0.0209
Present 0.0523 —0.0474  0.1080 0.3062 0.0227
Lee et ul. 0.1471 —0.0311 0.0712 0.3577 0.0132
Di Sciuva 0.1104 —0.0385 0.0767 0.3574 0.0174
—0.10 Pagano 0.2792 -1.0258 0.1122 0.2659 0.0117
Present 0.2628 - 0.0327 0.1260 0.2641 0.0122
Lee et al. 0.4324 - 0.0255 0.0830 0.2690 0.0062
Di Sciuva 04164 —0.0302 0.09162  0.2787 0.0087
0.00 Pagano (.5872 - 00122 0.1202 0.1353 0.0012
Present (1.3934 —0.0179  0.1360 0.1360 0.0000
Lee et al. 0.7046 -0.0214  0.0913 0.0913 0.0000
Di Sciuva 0.7225 —0.0219 0.1012 0.1012 0.0000
0.00" Pagano 0.0247 —0.6307  0.1202 0.1353 0.0012
Present 0.0179 ~01.5934  0.1360 0.1360 0.0000
Lee ¢r al. 0.0213 —0.7046  0.0913 0.0913 0.0000
D1 Sciuva 0.0219 0.7225 0.1012 0.1012 0.0000
0.10 Present 1.0327 -0.2628 0.2641 0.1260 —0.0123
Present 0.0327 —0.2628  0.2641 0.1260 —0.0123
Lee et al. 0.0255 —0.4324  0.2691 0.0830 —0.0062
Di Sciuva 0.0302 —0.4164  0.2787 0.0916  —0.0087
0.20 Pagano 0.0508 —0.0789  0.3188 0.1063  —0.0188
Present 0.0474 —0.0523 0.3062 0.1079  —0.0227
Lee er al. 0.0311 —0.1471 0.3577 0.0712  —0.0132
Di Sciuva .0385 —0.1104  0.3574 0.0767 —0.0174
0.30 Pagano 0.0667 0.1387  0.3027 0.0807 —0.0282
Present 0.0635 01312 0.2855 0.0818 —0.0334
Lee e al. 0.0396 0.1643 0.3504 0.0547 —0.0220
Di Sciuva 0.0468 0.1957 0.3371 0.0565 —0.0261
0.40 Pagano 0.0859 0.4152  0.2075 0.0461  --0,0410
Present 0.0823 0.3807 0.1956 0.0467 —0.0464
Lee erul. 0.0520 0.5148 0.2363 0.0318 —0.0335
Di Sciuva 0.0551 0.5017  0.2180 0.0309 —0.0348
0.50 Pagano 0.1098 0.8417  0.0000 0.0000 —0.0588
Present 0.1054 0.7894  0.0000 0.0000 —0.0640
Lee er ul. 0.0702 09176  0.0000 0.0000 —0.0485
Di Sciuva 0.0634 0.8078 0.0000 0.0000 -—0.0435
G =6(a2.b2.25). 8 =a-(2.h2.2)
F.o=0a2.0.5).:=a(0.h 2.2 G0 = 6,0.0,5).
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Table 2. Nondimensionalized deflections and stresses in (0 90 0 ) square laminate under
sinusoidal loading (7 =4 3. u = h)

a h Sourcee I a, . G, s G
4 Pagano 2.006 0.801 0.534 0.2172 1.256 0.0505
Present 2026y 0.8003 0.5463 02127 02540 0.0531
lee eral 19548 0.8443 0.60%3 02336 0.2390 0.0504
D1 Seiuva 1A910 0.6197  0.6607 0.2542 0.2620  0.0447
10 Pagano 0,733 0.590 0.283 0.1228 0357 (.0289
Present 0.7355 0.5932 0.28606 01220 0.3576  0.0291
Lee er ol 10,7529 0.5935 0.2934 0.1243 0.3561 0.0290
D1 Sciuva 11,7233 0.5489  0.2891 0.1230  0.3643 0.0274
S0 Pagano 0.541 0183 0.0842  1.393 0.0216
Present 04432 053410 00846 0.0842 0.3934  0.0216
Leceral 04459 0.5411 01847 0.0843 0.3934  0.0216
D1 Seiuva 04436 0.539) 0. 1sd3 0.0841 0.3938 0.0216
100 Pagano 0435 0,539 0.1%1 0.0828 0,395 0.0216
Present (0.4347 0.5393 0. 1808 0.0828 0.3947 0.0216
[ee eral 0.4347 0.5393 0.1809 0.0828 0.3947 0.0214
Di Sciuva 0.4343 0.538% 01808 0.082% 0.394% 0.0214
CPT 0.4312 .539 0,180 0.0823 0.395 0.0213
W=t 2 20 is s a2 h 2L DA =G a2 b2 6)
G~ aa 20004 FA0h 2.0y 5, = 6,000 1 2),

Table 3. Nondimensionalized deflections and stresses i (0 90 0 ) rectangular laminate
under sinusoidal loading (1 = /1 3. h = 3a)

ah Souree i a A i, 7. i,
4 Pagano 282 b4 0104 00334 0.35} 0.0281
Present 28424 11431 [URRRE 0.0215 0.3469 0.0279
Lee oral 2.7393 12069 01082 0.0301 0.3273  0.0276
Di Seina 27172 0.923] 01138 0.0318 0.3658 0.0255
10 Pagano 0919 0.726 004y 00132 0.420 0.0123
Present 0.9205 0.7277 0.0420 0.0149 0.4198 0.0122
fee o al (09183 0.7314 0.0420 0.0148 0.4186 0.0122
D1 Seruv 0RO 0.6746 0.0410 0.0147 0.4269 0.0115
S0 Pagano 0.520 0.628 (0.0239 0.0110 0.439 0.0084
Present 03205 0.6277 00238 0.0110 04387  0.0084
Leeeial (.5205 0.6277 0.023R 0.0110 0.4387 0.0084
D1 Sciuva 08187 0.6233 (LO2AX 0.0109 0.4390 0.0084
100 Pagano 1.508 0.624 00253 00108 0.439 0.0083
Present 0.5077  0.6243 00253 0.010x  0.4393  0.0083
Lee ¢t al 0.5077  0.6244 00233 0.0108 04394 0.0083
D1 Sciuva 0.5070 0.6240 00233 (L0108 0.4394 0.0083
CPT 0.503 0.622 (00252 0.010X 0.440 0.0083
W= 2 h 20 a dad 2h 21 2y i = ad (a2 b2 1 6

F.
GA0.H 2.0 F, = 4,00 12

L A 2000 4.

the other free surface) using the present approach is ditferent from the exact elasticity value
by only 4.0% while those from the DST and the LT are off by a huge margin of 42 and
36%. respectively. Similar observations can be made for the stress component &, which
behaves basically in the same manner as &, but in the opposite = direction.

Figures 2 and 3 depict the distributions of &,(¢ 2.h 2.2) and 6<(0.5;2,2) across the
thickness of the laminate of Problem (1) obtained from exact elasticity, the present theory,
the DST and the LT for ¢ /# = 4. It is seen that the results from the present theory follow
the curves from exact elasticity much more closely than the others. This is most obvious in
Fig. 3 for the transverse shear stress 4, which shows substantial differences between exact
elasticity and the DST and LT. The maximum value of & occurs near == —0.2. At this
location. it can be deduced from Table 1 that the value of 4 from the present theory is off
by only 2.1% while those from both the DST and LT are in error by as much as 14%.

The variation of the maximum deflection w(a 2.5 2.0y with a:h is plotted in Fig. 4 for
the different theories. The tigure shows that the present predictor-corrector approach gives
practically the same solution as exact elasticity over the range of ¢/t from 4 to 100. The
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Table 4. Nondimensionalized deflections and stresses in (0 90 /90 0 ) square laminate
under sinusoidal loading (1 =/ 4. a = b)

ah Source i 7, G- 7, G &
4 Pagano 19367 0,720 0.663 0.292 0.219 0.0467
Present 1.9636 07155 0.6766 0.2883 0.2183 0.0487
Lee ¢f ul. 18314 07272 07182 0.3292 0.2063  0.0418
Di Sciuva 1 688N 0.5239 0.5035 0.3746 0.2035  0.0351
10 Pagano 0.7370 0.339 0.401 0.196 0.301 0.0275
Present 07394 0.3611 0.4023 0.1954  0.3016  0.0277
lee ¢t al. 0.7313 0.3609 0.4111 0.2015 0.2992  0.0273
D1 Sciuva 07068 05220 04164 0.2048  0.3013  0.0261
30 Pagano 04446 0339 0.276 0.141 0.337 0.0216
Present 0.4447 05394 0.2760  0.1411 0.3373 0.0216
Lee et al. 0.444% 0.5394 0.2763 0.1413 0.3373 0.0216
D1 Sciuva 04434 05378 0.2762  0.1413 0.3375  0.0215
100 Pagano 0.4347 0.339 0.271 0.139 0.339 0.0214
Present 04346 0.5389 0.2710  0.1390 0.3388 0.0214
Lee et al. 0.4340 0.5389 0.2711 0.1390 0.3388 0.0214
D1 Sciuva 0.4342 0.5387 0.2708 0.1390 0.3388 0.0213
PT 0.4312 0.539 0.269 0.138 0.339 0.0213

W v (w 2oh 20 F) =Gul.h 2t )6, =6a2.h2.1.4)

N |
G.=6,a2.0.0): 6. = F00.52.00.6, =a,0.0.—12).

Table 5. Nondimensionahized deflections and stresses in (0 90 0 .90 ;0 ) square lami-
nate under sinusoidal loading (1 = h:6. ¢ = h)

ah Source I 7, G G, Fs [
4 Pagano 18503 1,683 .663 0.229 0.238 0.0394
Present ] 8753 0.6747 0.6571 0.2254 0.2362 0.0408
lec orul. 18151 0.6910 0.6241] 0.2406 0.2298 0.0357
131 Sciuva 15599 0.4926 0.6582 0.3084 0.2117 0.0242
10 Pagano 0.677] 0.343 0.430 0.223 0.258 0.0246
Present 0.679% 0.53475 0.4320 0.2231 (.2582 0.0247
l.ee et al 1.66KY 0.5469 0.4302 0.2278 0.2557 0.0241
D1 Sciuva 0.6209 0.3397 0.4050 0.2275 0.2546 0.0235
30 Pagano 04412 0.539 0.363 0.206 0.271 0.0214
Present 04414 03387 0.3627 0.2064 0.2715 0.0214
lee et al. 04410 0.3386 0.3627 0.2066 0.2713 0.0214
D1 Sciuva 04399 (. 5368 0.3636 0.2073 0.2710 0.0214
100 Pagano 0.433% (.539 1.360 0.205 0.272 0.0213
Present 04338 ().5387 0.3600 0.2055 0.2720 0.0213
Lee eral 04337 ).5387 0.3600 0.2056 0.2720 0.0213
Dt Sciuva 04332 0.53%80 0.3598 0.2055 0.2720 0.0213
CPT 04312 0.539 0.339 0.205 0.272 0.0213
W@ 2 h 25 =g 22 ) a —Fda2 b2 T Y
G.— a2 0.0 6, = G000 2004, G000 -1 2).

results from the DST and LT can be ditferent trom the exact elasticity solution by as much
as 20% for small values of « £, It can be concluded that the present approach has improved
the results of the DST and LT significantly through the use of a general higher-order zig-
zag model in the corrector phase.

The results for the (0 90 :0 ) square and rectangular laminates of Problems (2) and
(3) at different values of a. /7 ranging from 4 to 100 are presented in Tables 2 and 3. While
the LT can provide a fairly accurate solution for these two problems, the present method
gives results which are even closer 10 exact elasticity. For instance, at a/h = 4 for the square
laminate, the value of ¢, at (¢ 2.h:2.1 2)is only 0.1% from the exact elasticity value while
those from the DST and LT are different by 23 and 5.4%. respectively. For the rectangular
laminate. these ditferences are 0.3. 19 and 5.9%. respectively.

The distributions of the displacements and stresses through the thickness for the square
laminate are shown in Figs 5-8 for exact elasticity and the three zig-zag models. It is clear
that while the LT can give accurate results for the maximum in-plane displacement @ and
in-plane stress 4, which occur at the free surfaces. only the present model produces results
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which are accurate throughout the thickness of the laminate, including the locations at the
interfaces. This is also true of the transverse shear stresses &, and 65, especially in the 90°
layer.

As explained earlier, the present approach relies on the predictor phase to supply a
good estimate of the transverse shear stress distributions for the determination of the
functions /%(z) and f*(=) in the general higher-order displacement field of the corrector
phase. The changes in the distributions of 6, and &5 at the various stages of the present
approach are illustrated in Figs 9 and 10. respectively. Starting from the uniform dis-
tribution provided by the constitutive equations in the predictor phase using the linear zig-
zag model. the shear stresses take on an improved distribution through the use of the
equilibrium equations in the predictor phase. The fact that the distributions from the
constitutive and equilibrium calculations are vastly different from each other at this stage
is an indication of possible inaccuracies in the solution for the displacements and stresses
in the predictor phase. The shapes but not the actual magnitudes of the improved dis-
tribution are then used in the corrector phase for the calculation of the new solution. The
accuracy of this solution can be ascertained from a comparison of the distributions from
the constitutive and equilibrium calculations in the corrector phase. These distributions are
observed to be quite close to each other in the present problem, thus indicating the reliability
of the solution in the corrector phase.

The resuits for the (0 /90 /90 -0 ) and (0 /90 /0 /90 /0°) square laminates in the last
two problems are listed in Tables 4 and 5. An examination of the tables confirms that the
present approach behaves equally well tor these two problems.

CONCLUSIONS

A new predictor--corrector approach based on the use of a general higher-order layer-
wise displacement model was presented. This higher-order model included the linear and
cubic zig-zag models as special cases. In the predictor phase, one of the latter two models
was employed for the purpose of obtaining a good estimate of the transverse shear stress
distributions through the use of the equilibrium equations of elasticity. With this estimate,
the polynomial functions for the layerwise displacement field in the corrector phase were
deduced. For multiple corrector phases. it was shown that Chebyshev polynomials could
be used to determine the polynomial tunctions effectively.

Five standard test problems on the bidirectional bending of both symmetric and
antisymmetric thick laminates were solved with the proposed approach. The numerical
results were found to be in excellent agreement with the exact elasticity results of Pagano
for laminates with length-to-thickness ratios of as low as 4. There was a significant improve-
ment over the results from the linear and cubic zig-zag models especially at the interfaces.
The results also confirmed that the inaccuracies in such models were due entirely to the
differences between the assumed shape of the transverse shear stresses provided by the
constitutive equations and the calculated shape of the same stresses from the equilibrium
equations of elasticity. Minimising these differences was the central objective of the present
predictor-corrector zig-zag model.
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